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Abstract. We have used theoretical values of the sum rules in the information theory for 
the transport coefficients from work of Heyes and Powles, and have found that there is no 
noticeable improvement in the results for the diffusion coefficient of a Lennard-Jones Ruid over 
their results obtained using an indirect method for the evaluation of the sum rules. We also 
propose a phenomenological form involving two parameters for the time development of the 
time correlation function. The parameters are deterinbed from the frequency sum rules of the 
mpective time correlation function to incorporate exactly its short-time behaviour. The values of 
the sum mles and Green-Kubo expressions are used to determine self-diffusion. shear viscosity 
and thermal conductivity of Lennard-Jones fluids over wide ranges of density and temperature. A 
reasonable agreement with computer simutadon data is obtained for all the transport coefficients. 

1. Introduction 

Transport coefficients of simple classical fluids expressed in terms of appropriate time 
correlation functions are obtainable from computer simulation experiments for a given 
interaction potential representative of the fluid. Exhaustive computer simulation data for 
the self-diffusion, shear viscosity and thermal conductivity coefficients are now available 
[I-31 for a large number of thermodynamic states over the whole of the phase diagram 
of Lennard-Jones (U) fluids. Theoretically, attempts have been made recently to develop 
quantitatively accurate theories [4-61 of these transport coefficients using mainly the Mori 
memory function formalism [7,8]. This approach, which was originally developed by 
Martin and Yip [9], involves choosing a phenomenological form for first- andlor second- 
order memory functions, and has been widely used to predict the transport coefficients. 
The parameters of  the memory function were generally determined using the theoretically 
calculated frequency sum rules of the spectral function of the time correlation function (TCF). 
Overall these attempts have been quite successful in predicting the transport coefficients as 
was judged by their comparison with the simulation data over large ranges of density 
and temperature of the LJ fluid. Recently, Heyes and Powles [IO] applied information 
theory, which involves optimization of the spectral function of the TCF itself, rather than the 
memory function. So-called second-, fourth- and sixth-order information theories involve 
frequency sum rules up to the second, fourth and sixth orders, respectively. These sum 
rules were obtained by them with the help of computer simulation and pre-knowledge of 
the time correlation function itself. But very recently Heyes et al [I 11 suggested that, if 
sum rules are obtained from the theory, one is likely to get better estimates of transport 
coefficients than those obtained by them using fourth-order information theory. This, then, 
may avoid the use of sixth-order information theory. Therefore, one of the motivations of 
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the present work is to use theoretical sum rules in fourth-order information theory and to 
see the improvement over the results of Heyes and Powles. In fact, the use of theoretical 
sum rules makes information theory more useful and complete. We have found that the 
use of theoretical sum rules does not improve the results obtained by Heyes and Powles. 
In addition to this, in the present work we use a phenomenological form involving two 
parameters for the time correlation function. Parameters are determined from the sum rules 
to incorporate exactly the short-time behaviour of the TCF. These have then been used to 
determine self-diffusion, shear viscosity and thermal conductivity of w fluids over wide 
ranges of density and temperature. The results obtained have been compared with computer 
simulation results. It has been found that the model used provides very good agreement for 
the self-diffusion coefficient. The agreement for shear viscosity and thermal conductivity 
with simulation results is also quite reasonable. 

The layout of the paper is as follows. In section 2 we present the theory. The proposed 
model is also given there. In section 3, results and discussion are presented. The conclusion 
is given in section 4. 
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2. Theory 

2. I .  Generalities 

The transport coefficients of mass (diffusion), momentum (viscosity) and energy (thermal 
conductivity) in terms of Green-Kubo integrals [7, SI of an appropriate TCF can be written 
as 

m 
r = K J  dt@) 

where r is the generalized transport coefficient and K is some thermodynamic constant. 
The normalized autocorrelation function t ( r )  is defined as 

CO) = (A(t)A(0))/(AZ) (2) 

where A(r) is an appropriate dynamic variable. In the above equation the angular brackets 
represent the ensemble average. The power spechum of E ( t )  is defined as 

so that 

r = ( A Z ) K a p ( 0 ) .  (4) 

Inverting equation (3), we have 
~~ m 

e ( t )  = p(w)e-is' d o  = 1 - (t2Mz/2!) t (r4M4/4!) - . . . s, 
where 

m 
MU, = 1, wU,p(o )  do.  
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If A ( t )  is the velocity of the tagged particle, then the corresponding transport coefficient 
is the self-diffusion coefficient, given by 

~ B T  
D = -I  m V(r)dr. 

The velocity autocorrelation (VAC) function is given by 

~ ( t )  = ( U I ~  ( t ) u d o ) ) / ( u E )  (7b) 

where uIT is the x component of the velocity of the particle labelled as 1. The transverse 
stress autocomelation (TSAC) function S ( t )  is related to the shear viscosity defined as 

where 

In equation (5) Fix@), u&) and xi@) are the x components of force, velocity and position 
of the ith particle at time I. Similarly the themal conductivity coefficient h is related to 
the energy current density autocorrelation (ECDAC) function E@),  as 

where 

with 

and 

e.. - * . . / p .  
L J  - Cl , I .  

The exact evaluation of TCF is not yet feasible except for very simple cases because this 
amounts to solving a complicated many-body problem. Therefore, a number of closures 
have been suggested in the past to calculate the transport coefficients, for the TCF itself or 
for the memory function appearing in the Mori-Zwanzig formalism. In the next subsection 
we consider one such closure. 
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2.2. Information theory 

This method involves the optimization of p ( w )  using a finite number of sum rules. If MZ 
and M4 are known then we have 

R K Sharma et a1 

p(w) = N-'  exp[-(yoZ + pw4)i (12) 

and 

In these equations y and p are related to MZ and M4 and D-,-~/z is a parabolic 
cylindrical function. Equation (13) is subject to the restriction that M4 < 3M;. However, 
for M4 > 3M: from non-classical information theory [12] we have 

p ( w )  = P [ e x p ( @  + yw2) - I]-' (14) 

and 

K ( A Z ) ( Z Y ) I / Z  
t =  

SI(1-eS) 

where 

si = C e x p [ ( l  - n ) ~ l n " ' ~ ) - ~  

and y and @ are determined from the following equations 

"=I 

Mz = & / 2 Y  SI 

and 

M4 = 3S3/4y2Si. (17) 

For details of information theory, readers should refer to the work of Heyes and Powles 
[lo,  111. In the next section we use equations (13) and (15) to calculate the transport 
coefficient using the theoretically generated sum rules and compare our results with that of 
Heyes and Powles [lo] along with the computer simulation results. 

2.3. A phenomenological model 

In the present work, we propose a simple phenomenological form of the TCF given as 

k(t)  = sech(t/q) cos(olt) (18) 

so that the normalized spectrum is given as 



Transport coeflcients of classical dense$uids 541 

The expression for the transport coefficient is obtained as 

In order to calculate T we estimate 01 and TI using the short-time properties of the 
normalized TCF given by equation (6). Comparing the short-time expansion of equation (18) 
with equation (15) we obtain 

r;' = (M4/M2) - M2 ( 2 1 4  

and 

From the above expression we find that w: is negative for M4/M: =. 5 so that w, becomes 
imaginary and then 

? ( t )  = sech(t/rl j cosh(w;t) (22) 

where = -w:. 
The expression for the power spectrum is modified to 

and for the transport coefficient we obtain 

5 = (A2)K(il/2)T1 sech(no;r1/2). ~ ~~ (24) 

The model presented in this subsection has theoretical origin, as has been demonstrated 
in the work on the self-diffusion coefficient by Tankeshwar et a1 [6]. The model is based 
on separating the configurational space of the fluid system into vibrational and structural 
parts and dividing the many-body system into a number of cells. Then the sech(t/r,) is the 
waiting-time distribution for the cell jump and cos(olt) is the normal-mode contribution, 
where r;' and w1 are respectively jumping and vibrational frequencies. This model has 
provided very satisfactory results for self-diffusion coefficients for various systems [13-171 
as has been judged by their comparison with computer simulation or experimental results. 
In this paper we have used the same functional form in a phenomenological sense to see 
its applicability for the prediction of shear viscosity and thermal conductivity. 

3. Results and discussion 

In order to calculate the transport coefficients from equations (13) or (15) and from (20) 
or (24), we require MO, MZ and M4 as inputs. The general expressions for these sum 
rules have been obtained for the VAC, TSAC and ECDAC functions by Tankeshwar et a1 141. 
The expressions for these sum rules involve the interatomic potential and static correlation 
functions up to five particles. Owing to limited information about static triplet and higher 
particle correlation functions, the superposition approximation and a low-order decoupling 
approximation were used. respectively. The final expressions have been put into a form 
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that is readily calculable for a given potential and a static pair correlation function at any 
thermodynamic state of the fluid. The values of these sum rules have been tabulated in 
earlier work [4]. It may be noted that the superposition approximation used here has 
provided [4] a good estimate of the triplet contribution to M4 of VAC function as was 
judged by their comparison with simulation results. Using these values of the sum rules 
in the information theory and the model presented in section 2.3, we calculate the self- 
diffusion coefficient, shear viscosity and thermal conductivity of U fluids for wide ranges 
of density and temperature. We also present below a comparison of results obtained for the 
self-diffusion coefficient from information theory using theoretical values of sum rules with 
those obtained by Heyes and Powles using sum rules generated from information of the TCF 
by computer simulation. Here it may be noted that we have not made such a comparison 
for shear viscosity and thermal conductivity as we know the sum rules of the VAC function 
more accurately than those of TSAC and ECDAC function, which involve higher-order static 
correlation functions. 

3.1. Self-diffusion coefjicient 

In the present work, with the intention of using the values of the sum rules calculated from 
their theoretical expressions in the information theory, we have calculated the self-diffusion 
coefficient from equation (13) or (15). The results thus obtained for D' = D ( ~ E / u ~ ) ' / ~ ,  
where a and E are two parameters of the LJ fluid, have been compared with results obtained 
by Heyes and Powles [lo] using the same theory but an indirect method for the evaluation 
of the sum rules. A comparison is given in table 1 for a few densities n* = no3 and 
temperatures T* = ksT/&. From table 1 we find that our results agree very well with 
those obtained by Heyes and Powles [lo]. Therefore, one may conclude that use of the 
theoretical values of sum rules makes no improvement over the results obtained by Heyes 
and Powles [lo] as was expected by them. For the sake of comparison of results of 
our model with information theory we also present below some results for self-diffusion 
coefficients calculated from the model presented in section 2.3. 
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Table 1. Values of the self-diffusion coefficients' at different temperatures T' and densities n'. 

T' n- Di D?H Dk DhD 

0.720 0.848 0.057 0.056 0.042 0.029 
1.060 0.731 ~ 0.108 0.108 0.092 0.091 
1.060 0.821 0.085 0.084 0.067 0.060 
1.830 0.500 0.329 ~ 0.342 0.337 0.382 
1.810 0.600 0 . M  ~ 0.265 0.239 0.273 
1.810 0.700 0.185 0.194 0.170 0.191 
1.900 0.801 0.147 0.151 0.125 0.131 
2.480 0.500 0.431 0.452 0.448 0.471 
2.500 0.803 0.185 0.190 0.162 0.173 
3.500 0.700 0.324 ~ 0.326 0.311 0.331 

LD.--d' I - iffusion coefficients obtained from information t h e q  using theoretical sum rules. 
D;, = results of Heyes and Powles using the same theory. D& = results of equations (20) or 
(24). DGD =computer simulation results of Heyes [I]. 

The detailed results are given in our earlier work 161. The 01. and TI, which are 
parameters of the model TCF, are calculated from equation (21). We also note that rl 
remains constant for a given temperature whereas 01 decreases with increase in density. 
It implies that the effect of increase-of density is to decrease the vibrational frequency 
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of a particle in a more densely packed cell. On the other hand, for a given density it 
is found that TI decreases and w{ increases with increase in temperature. It implies that 
the effect of increase of temperature is to increase the jumping frequency and vibrational 
frequency, which seems to be plausible. Using the values of w ]  and rl we calculate D' 
from equations (20) and (24); results for D* are given in table 1 for a few densities and 
temperatures. It can be noted that our model provides a better estimate of self-diffusion 
coefficient than the information theory, especially nearthe triple point. 

3.2. Shear viscosity 

In order to calculate shear viscosity from equations (20) and (24) we calculate w1 and r, 
by using the values of the sum rules of the TSAC function from the work of Tankeshwar 
et ul [4]. It has been found that, for the TSAC function, S(t )  always decays monotonically 
in time and no backscattering-like effect has been observed. It has also been noted that, 
for a given temperature, r1 remains almost constant whereas w; increases with increase in 
density. On the other hand ri decreases with increase in temperature for a given density. 
It implies that the effect of increase of temperature is to increase the jumping frequency. 
The values of U{  and q thus obtained have been used to calculate shear viscosity of U 
fluids from equation (24) with K = n / k s T .  The results obtained for q* = r p ~ ~ ( m s ) - ~ / ~  are 
given in figure 1 for eight isotherms for various densities. In figure 1 the results obtained 
from equation (24) are shown as full curves whereas the simulation data of Heyes [1,3] 
are shown as full circles for comparison. It can be seen from figure I that the results of 
our model are generally higher than the simulation data except for T' = 6.0 and 10.0 at 
8" less than 0.8. Here it may be noted that up to T* = 4.5 the shear viscosity results 
of the simulation are from a non-equilibrium molecular dynamics method [l] whereas for 
T* = 6.0 and 10.0 the simulation results were obtained using the Green-Kubo method [3]. 
In order to look for a reason behind the disagreement between our results and simulation 
results, we investigate the long-time behaviour of equation (22). which is given as 

S(r) = exp(-r/rl) exp(wit) 

where w; and r, are positive. This function is the product of a decreasing and an increasing 
function of time, which makes S@) decay slowly in the region when U', l/ri. This 
and the fact that the short-time behaviour is exactly taken care of in our model reveal that 
the model determines an overestimated contribution to shear viscosity from the long-time 
behaviour of S ( t ) .  However, this contribution at long times is not enough to explain the 
results of shear viscosity for a very dense fluid or for the glassy phase. For example, 
our result for q* at the triple point (T' = 0.73 and II* = 0.84) is 2.61, compared with 
a simulation value of 3.03. This may be due to non-inclusion of mode coupling effects, 
which is quite important at high densities. The overestimation of the long-time effects by 
our model essentially explains the slight overestimations of the shear viscosity calculated 
using the model as is depicted in figure 1. However, for T* = 6.0 and 10.0 the reason 
for the underestimation of shear viscosity may lie in the use of two different simulation 
data generated using different methods. For example, on comparing two simulation data at 
T' = 3.5 and 6.0 for the same density, say at n* = 0.5, we find that the result for shear 
viscosity is higher at T* = 6.0 by about a factor of 2, which is generally not expected. Here 
it may be noted that the information theory with the use of theoretical sum rules provided 
an estimate of shear viscosity in very close agreement with the results of our model used 
here. 
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Flpm 1. Variaion in the shear viscosity q* with density. Full curves are the results obtained 
from equation (24). whereas MD resulfs of Heyes are represented by full circles. 

3.3. Thermal conductivity 

For the calculation of thermal conductivity, 0, and rI are evaluated by using tabulated 
data [41 for the frequency sum rules of the energy current density autocorrelation function 
for various densities and temperatures of the U fluids. It has been found that for a given 
temperature rl decreases with increase in density whereas OJ; increases with increase in 
density. For a given density, it has been found that 51 decreases whereas 01 increases with 
increase in temperature. We also note that, like S( t ) ,  the ECDAC function also does not 
show any negative region in its time development, which is in agreement with the available 
simulation results. These values of w; and 5, are used in  expression (24) with K = n / k i T  
to calculate lhermal conductivity 1' = A(v2/kB)(m/&)' /* .  The results obtained are shown 
as full curves in figure 2. The non-equilibrium molecular dynamics results of Heyes [2] 
are also shown there as full circles. The crosses are the results obtained by Heyes [2] 
for a comparable fit to experimental data on argon. From figure 2 it can be seen that 
our model successfully explains the density dependence of thermal conductivity, yielding 



Tramport coeffcients of classical dense fluids 545 

a good agreement with simulatiodexperimental results except for densities greater than the 
triple-point density and at the highest temperature investigated here. However, results at 
T* =~3.5 are closer to the fitted data of experiments on argon. The maximum deviation 
from simulation data is found at T* = 1.85 at density n* = 1.024. The deviation from the 
simulation results may be attributed to the non-inclusion of corect long-time behaviour, as 
has been discussed above for shear viscosity. Here, it may also be noted that results of 
information theory and of our model for thermal conductivity are in very close-agreement. 

Figure 2. Variation in the thermal conductivity b' with density. Full curyes are results obtained 
from equation (24). full circles me MD results af Heyes, and crosses are the results of an equation 
fined to experimental results on mgon. 

4. Conclusion 

In this paper we have used the values of the theoretical sum rules needed in the information 
theory of Heyes and Powles and found that there is no improvement in the results for the 
diffusion coefficient over those obtained by them using an indirect method of evaluation 
of sum rules, as was expected by them. We have also proposed a phenomenological form 
for the TCF itself to estimate the self-diffusion, shear viscosity and thermal conductivity of 
an LJ fluid over wide ranges of density and temperature. It has been found that this model 
provides a reasonable estimate of transport coefficients for the whole fluid range. The 
agreement is found to be good for the self-diffusion coefficients and thermal conductivity 
as judged from their comparison with simulation results. On comparing the results of this 
model for shear viscosity and thermal conductivity with the information theory, it is found 
that both are in  very close agreement. On the other hand, for the self-diffusion coefficients 
our model predicts better results than the information theory for dense fluids. 
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